Chapter 32. Entering the Third Dimension (Version 1.0, September 12, 2006)

32

Entering the Third Dimension

NOTE: This chapter was originally written for the book Applications = Code + Markup: A Guide to the Microsoft Windows Presentation Foundation by Charles Petzold (Microsoft Press, 2006) but was excluded for reasons of space. More information about the book can be found on the web page www.charlespetzold.com/wpf.
This chapter © copyright Charles Petzold, 2006.
The Windows Presentation Foundation would have an impressive graphics system even without the System.Windows.Media.Media3D namespace. What that namespace adds is a collection of structures and classes for doing rudimentary three-dimensional graphics in a WPF application. You’re probably not going to create a computer-animated epic with this 3D graphics system, and game programmers should probably look more to Microsoft DirectX technologies for their needs, but for simple 3D visuals, it’s ideal.

A chapter of this length can’t pretend to present a comprehensive exploration of 3D graphics programming. Think of this chapter as an introduction and brief tour through the capabilities of the system.

Now that you have become thoroughly accustomed to a coordinate system with an origin at the upper-left corner, vertical coordinates that increase going down the screen or printer page, and a uniform resolution of 96 dots per inch, it’s time to get used to something a little different. The 3D graphics system is based around conventional three-dimensional coordinates, where increasing values of y go up and increasing values of z seem to come out of the screen:

This is known as a right hand coordinate system. If you use your right-hand forefinger to point towards increasing x coordinates, and your middle finger points up for increasing y coordinates, then your thumb points in the direction of increasing z coordinates.

The Point3D structure defined in the System.Windows.Media.Media3D namespace has X, Y, and Z properties of type double to indicate a point in this coordinate space. The Size3D also has X, Y, and Z properties but these describe lengths (or widths or heights) rather than positions. The Rect3D structure combines a Point3D and a Size3D to describe a three-dimensional rectangle.

Of much more practical importance than either Size3D and Rect3D is Vector3D, which also defines X, Y and Z properties. As I hope you’ll recall, a vector is a magnitude and a direction. The direction of a Vector3D object can be visualized as an arrow beginning at the origin and ending at the point (X, Y, Z). The magnitude of a Vector3D object can be calculated using the three-dimensional form of the Pythagorean formula:

[image: image1.wmf]2

2

2

Z

Y

X

+

+

The Vector3D structure defines a read-only Length property that provides this magnitude, as well as a read-only LengthSquared property.

You compose a three-dimensional scene within an object of type Viewport3D, which derives from FrameworkElement and which can be found in the System.Windows.Controls namespace. Within a Window or Page you can use Viewport3D just as you use any other element. You can put a Viewport3D object on a panel with other elements, or you can set the Viewport3D object as the content of a Window or Page. If you’d like the Viewport3D element to occupy an entire Page, the XAML might look something like this:

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Viewport3D>

 …

 </Viewport3D>

</Page>

Any practical 3D scene you compose within the Viewport3D element must contain:

· At least one three-dimensional graphical object.

· At least one light source.

· A camera.

Viewport3D defines just two public properties. The Camera property is of type Camera, and the Children property is of type Visual3DCollection, a collection of Visual3D objects, which encompasses the three-dimensional graphical objects and the light sources.

All three-dimensional graphical objects are defined by a collection of connected triangles in three-dimensional coordinate space. Very often these triangles will be pieced together to define a solid object. For example, if you want to create a cube, each of the six faces of the cube requires two triangles for a grand total of twelve. Curved surfaces must be approximated by multiple small triangles connected at angles to each other. There is no concept of arcs or splines in the System.Windows.Media.Media3D namespace. In the general case you’ll be defining solid graphical objects, but you can instead construct “flat” objects, or objects that contain multiple flat pieces.

In constructing a graphical object you begin with a geometry, which for 3D graphics is an object of type Geometry3D. Only one class descends from Geometry3D, which is MeshGeometry3D:
Object

DispatcherObject (abstract)

DependencyObject

Freezable (abstract)

Animatable (abstract)

Geometry3D (abstract)

MeshGeometry3D

The two crucial properties of MeshGeometry3D are Positions and TriangleIndices, which you use to define the vertices of your object, and the triangles that make up the object.
For example, suppose you want to define an object consisting of just one flat triangle, which is the simplest 3D object possible. You want this triangle to sit in the three-dimensional coordinate space as shown here:
 SHAPE * MERGEFORMAT

This object is defined by three points in this three-dimensional coordinate space. These coordinates have no relationship to physical dimensions. It is common to use small coordinate values in the vacinity of 0 and 1 for defining such objects, and often one vertex (or perhaps the center of the object) will be aligned at the point (0, 0, 0). You’ll use transforms to later move or size the object. For the triangle shown above, you specify the three coordinates in the Positions attribute in a MeshGeometry3D element:

<MeshGeometry3D Positions="-1 0 0, 0 1 0, 1 0 0" …
I’ve separated the three points with commas. In the general case, the Positions collection contains a point for every vertex in the object. The second property of MeshGeometry3D you must set is TriangleIndices, of type Int32Collection. This collection contains three integers for every triangle that makes up the object. These integers are indexes into the collection of Point3D objects defined in the Positions collection. For example:
<MeshGeometry3D Positions="-1 0 0, 0 1 0, 1 0 0"

 TriangleIndices="0 2 1" />

Because the object consists of only one triangle, TriangleIndices contains just three numbers. The three points in the Positions collection indexed by the integers 0, 2, and 1 are the points (–1, 0, 0), (1, 0, 0), and (0, 1, 0).
Why didn’t I set TriangleIndices to “0 1 2” rather than “0 2 1”? It’s the same three points, right? Yes, but the order makes a difference. The triangle we’re defining is considered to have a front and a back, and the order of the three indices in TriangleIndices indicates which face is which. You indicate the front by indexing the points of the triangle in a counter-clockwise direction. With a TriangleIndices string of “0 2 1” (or “2 1 0” or “1 0 2”), the side facing the positive half of the z axis is considered the front. If you set the TriangleIndices string to “0 1 2” (or “1 2 0” or “2 0 1”) then the front side faces the negative half of the z axis.

To bring the MeshGeometry3D object out of the realm of mathematics into the realm of real life, you must combine the geometry with objects known as materials to make a GeometryModel3D. Materials are much like brushes, and indeed, are based on brushes.

GeometryModel3D defines three properties. The Geometry property is of type Geometry3D and can only be an object of type MeshGeometry3D. The Material and BackMaterial properties are of type Material and color the front and back of the object. The Material class has four descendants, as shown in the following class hierarchy:

Object

DispatcherObject (abstract)

DependencyObject

Freezable (abstract)

Animatable (abstract)

Material (abstract)

DiffuseMaterial

EmissiveMaterial

MaterialGroup

SpecularMaterial

DiffuseMaterial is intended to simulate a common matte surface. EmissiveMaterial contributes a glowing effect while SpecularMaterial is supposed to be more like shiny metal. The MaterialGroup class lets you layer different materials.

The DiffuseMaterial class (which I’ll be focusing on) has a Brush property that you must set. The class also defines Color and AmbientColor properties, but these have no effect if the Brush property is not set.
Here’s a simple GeometryModel3D element that combines the MeshGeometry3D element defined above with a solid red brush to color the front of the triangle and a solid blue brush for the back.
<GeometryModel3D>

 <GeometryModel3D.Geometry>

 <MeshGeometry3D Positions="-1 0 0, 0 1 0, 1 0 0"

 TriangleIndices="0 2 1" />

 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Red" />

 </GeometryModel3D.Material>

 <GeometryModel3D.BackMaterial>

 <DiffuseMaterial Brush="Blue" />

 </GeometryModel3D.BackMaterial>

</GeometryModel3D>
Ultimately, this chunk of markup will go inside a Viewport3D element that will actually display the scene for our pleasure. I mentioned earlier that Viewport3D defines a Camera property of type Camera and a Children property of type Visual3DCollection, which is a collection of Visual3D objects. Visual3D is an abstract class, as shown in the following class hierarchy:
Object

DispatcherObject (abstract)

DependencyObject

Visual3D (abstract)

ModelVisual3D
Although the Children collection of a Viewport3D element is defined as a collection of Visual3D objects, in reality it will be a collection of ModelVisual3D objects. ModelVisual3D defines three properties. The Content property is of type Model3D. The Transform property is of type Transform3D, and the Children property is of type Visual3DCollection (the same as the Children property of Viewport3D itself).

The most important property of ModelVisual3D is Content. That is an object of type Model3D, which is shown in the following class hierarchy:
Object

DispatcherObject (abstract)

DependencyObject

Freezable (abstract)

Animatable (abstract)

Model3D (abstract)

GeometryModel3D

Light (abstract)

AmbientLight

DirectionalLight

PointLightBase (abstract)

PointLight

SpotLight
The good news here is that one class that descends from Model3D is GeometryModel3D, which I’ve already identified as a combination of a Geometry3D and materials. The other classes are different types of light sources.

In summery, Viewport3D has children of type ModelVisual3D, which can have a Content property of type GeometryModel3D, so here’s what the markup looks like so far:
<Viewport3D>

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D>

 <GeometryModel3D.Geometry>

 <MeshGeometry3D Positions="-1 0 0, 0 1 0, 1 0 0"

 TriangleIndices="0 2 1" />

 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Red" />

 </GeometryModel3D.Material>

 <GeometryModel3D.BackMaterial>

 <DiffuseMaterial Brush="Blue" />

 </GeometryModel3D.BackMaterial>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>
 …

</Viewport3D>

A second child of Viewport3D can define the light source for the scene. The simplest type of light source is AmbientLight, and you can use it with default settings:
<Viewport3D>

 …

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <AmbientLight Color="White" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 …

</Viewport3D>

The scene now has a graphical object to view and a light source to make it visible. The only thing missing is how we’re going to be looking at the object. The 3D graphics system uses a camera metaphor for viewing three-dimensional objects. The following class hierarchy shows the classes that derive from Camera:

Object

DispatcherObject (abstract)

DependencyObject

Freezable (abstract)

Animatable (abstract)

Camera (abstract)

MatrixCamera

ProjectionCamera (abstract)

OrthographicCamera

PerspectiveCamera

I’ll be focusing (so to speak) on PerspectiveCamera, which is conceptually closest to an actual camera.
The camera is probably the trickiest part of setting up a small 3D scene. If you don’t get the camera just right, you won’t see the graphical object you’ve created, and getting the camera just right involves working with two Vector3D objects.

You define a camera in a Viewport3D.Camera property element:

<Viewport3D>

 …

 <Viewport3D.Camera>

 <PerspectiveCamera … />

 </Viewport3D.Camera>

</Viewport3D>

You must first pick a spot in three-dimensional coordinate space for location of the camera, which you set to the Position property. For the particular image we’re building here, we probably want the camera to be somewhere in front of the object, which means that the location of the camera will have a positive z coordinate. Picking a value of z equal to 3 might be a good first try. Let’s also position the camera even with the center of the triangle, which is an x coordinate of 0 and a y coordinate of 0.5.
<PerspectiveCamera Position="0 0.5 3" … />

The Position property indicates the position of the camera, but it doesn’t tell you in what direction the camera is pointing. That you specify with an object of type Vector3D that you set to the LookDirection property. The magnitude of the Vector3D object is ignored; only the direction is important. If the camera is positioned at the point (0, 0.5, 3), then you probably want the camera pointed straight at the triangle, which means the camera is pointed in the direction of negative z coordinates:

<PerspectiveCamera Position="0 0.5 3" LookDirection="0 0 -1" … />
I’ll have more to say about the LookDirection property shortly. It can be very tricky if you’re not adept with vectors. If you don’t get it just right, there’s a good chance the camera will be pointed somewhere where you won’t see anything, and that can be very frustrating.
We now have the camera located at a particular point in 3D space and pointing at a particular direction. Are we done? No, because we don’t know if the camera is right side up, or upside down, or tilted to one side. It is necessary to clarify this with the UpDirection property. You set this property to another Vector3D object. Once again, the magnitude is ignored. Only the direction is important. If you want the camera in its normal orientation, you want this vector pointing up, that is, in the direction of positive y coordinates:

<PerspectiveCamera Position="0 0.5 3" LookDirection="0 0 -1"

 UpDirection="0 1 0" … />

If you’re familiar with photography, you are probably familiar with the difference between telephoto (or “long”) lenses used to bring distant objects into view, and wide-angle (or “short”) lenses used for the opposite effect—to get as much of a scene as possible in the shot. These various types of lenses effectively define a viewing angle, which is a small angle for the telephoto lenses, and a large angle for the wide-angle lenses. In the PerspectiveCamera element, you specify an angle with the FieldOfView attribute:
<PerspectiveCamera Position="0 0.5 3" LookDirection="0 0 -1"

 UpDirection="0 1 0" FieldOfView="90" />

Let’s get a bird’s eye view of the layout of the camera and the object we’re viewing.

 SHAPE * MERGEFORMAT

If you do the trigonometry, you’ll find that the location of the camera three units from the triangle combined with a 90 degree viewing angle results in a total field of view that is three times the width of the two-unit wide triangle. The Viewport3D element will therefore size the scene so the triangle is one third the width of the Viewport3D element. Here’s the complete stand-alone XAML file, which you can run in XAML Cruncher or Internet Explorer.
Simplest3D.xaml
<!-- ===

 Simplest3D.xaml (c) 2006 by Charles Petzold

 === -->

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Viewport3D>

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D>

 <GeometryModel3D.Geometry>

 <MeshGeometry3D Positions="-1 0 0, 0 1 0, 1 0 0"

 TriangleIndices="0 2 1" />

 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Red" />

 </GeometryModel3D.Material>

 <GeometryModel3D.BackMaterial>

 <DiffuseMaterial Brush="Blue" />

 </GeometryModel3D.BackMaterial>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <AmbientLight Color="White" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <Viewport3D.Camera>

 <PerspectiveCamera Position="0 0.5 3" LookDirection="0 0 -1"

 UpDirection="0 1 0" FieldOfView="90" />

 </Viewport3D.Camera>

 </Viewport3D>

</Page>

In summary, the Viewport3D element has two children of type ModelVisual3D, both of which contain property elements for the Content property. The Content of the first is the GeometryModel3D and the Content of the second is an AmbientLight object. The XAML file concludes with the propety element Viewport3D.Camera and the PerspectiveCamera definition.
This has been a lot of work to gaze upon what appears to be a simple two-dimensional red triangle. But let’s see if we can move the camera around to get some more interesting views of it.
As you’ll immediately discover when you start experimenting with different values for the camera position, changes to the Position property must usually be accompanied by changes to the LookDirection property. Here’s a little trick to determine a value of LookDirection that works:
Pick a coordinate point in the graphical object that you always want in the center of the Viewport3D. Let’s call that point VisualCenter. For this particular triangle, that point is probably (0, 0.5, 0). Now, whenever you change Position, you can calculate LookDirection like so:

LookDirection = VisualCenter – Position
You subtract one point from another by subtracting the pairs of x, y, and z coordinates. If you perform this calculation for the XAML file I just showed you, you’ll find a LookDirection of (0, 0, –3) whereas the file has (0, 0, –1). But these two vectors indicate the same direction, which is all that the LookDirection property is interested in.
Let’s experiment with the Simplest3D.xaml file by first narrowing the viewing angle of the camera to 45 degrees:

<PerspectiveCamera Position="0 0.5 3" LookDirection="0 0 -1"

 UpDirection="0 1 0" FieldOfView="45" />

The width of the triangle now nearly fills the width of the Viewport3D. Let’s move the camera four units to the left, but also changing the LookDirection so that the camera continues to point in the direction of the triangle center:

<PerspectiveCamera Position="-4 0.5 3" LookDirection="4 0 -3"

 UpDirection="0 1 0" FieldOfView="45" />

The triangle now seems somewhat distorted because the left side is closer to the camera than the right side. If you use the Pythagorean Theorem, you’ll find that the camera is 5 units from the center of the triangle. Let’s double that difference but divide the FieldOfView angle in half so the triangle is approximately the same size:

<PerspectiveCamera Position="-8 0.5 6" LookDirection="8 0 -6"

 UpDirection="0 1 0" FieldOfView="22.5" />

The distortion of the triangle is less at this distance. Let’s go in the other direction and get closer to to the triangle while increasing the FieldOfView:

<PerspectiveCamera Position="-2 0.5 1.5" LookDirection="2 0 -1.5"

 UpDirection="0 1 0" FieldOfView="90" />

Now the distortion is exaggerated, which is a well-known photographic effect. The closer you get to an object, the greater the difference in apparent size between parts of an object closer to or further away from the camera.
Let’s change the FieldOfView back to 45 degrees, but let’s also get closer to the plane where z equals 0:
<PerspectiveCamera Position="-4 0.5 0.5" LookDirection="4 0 -0.5"

 UpDirection="0 1 0" FieldOfView="45" />
Now we’re looking almost parallel to the front face of the triangle, with the result that the triangle seems very small. If we move to where the z coordinate equals 0, we won’t see anything at all because the triangle is flat and has zero width.
<PerspectiveCamera Position="-4 0.5 0" LookDirection="4 0 -0"

 UpDirection="0 1 0" FieldOfView="45" />
But now if we move the camera to a position with a negative z coordinate, we can see the back of the triangle, which has been colored blue:
<PerspectiveCamera Position="-4 0.5 -3" LookDirection="4 0 3"

 UpDirection="0 1 0" FieldOfView="45" />

Although it didn’t seem so at first, the triangle is truly an object with a front and a back occupying a three-dimensional coordinate space.

The next step up from a triangle is a rectangle, which you can define with two triangles. Here’s a square with coordinates (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 1, 0). In the following diagram, a diagonal on the square shows how it’s composed of two triangles:
 SHAPE * MERGEFORMAT

If we’re defining a MeshGeometry3D element for this figure, the Positions attribute simply lists these four points:

<MeshGeometry3D Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0" …
The TriangleIndices attribute must contain two sets of three indices for the two triangles. The triangle that makes up the lower right part of the figure consists of the points (0, 0, 0), (1, 0, 0), and (1, 1, 0), which correspond to the indices 0, 2, and 3. The triangle at the upper left consists of the points (0, 0, 0), (1, 1, 0), and (0, 1, 0), which correspond to the indices 0, 3, and 2. Here’s the MeshGeometry3D element with the TriangleIndices attribute:

<MeshGeometry3D Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0"

 TriangleIndices="0 2 3, 0 3 1" …

In both cases I chose indices that referenced the points in the counter-clockwise direction, so the side of the square facing the positive z axis is considered to be the front of the figure. If you aren’t diligent in indexing the points in a clockwise or counter-clockwise direction, you must set the Normals property of MeshGeometry3D to a collection of vectors, each vector corresponding to a triangle. You make this vector at right angles to the plane of the triangle and pointing in the direction of the triangle’s front.
I want to color the front and back of this square with a VisualBrush, and I want this VisualBrush oriented so that the top-left corner of the VisualBrush corresponds with the top-left corner of the square. This seems like a straightforward mapping, but it’s really not because the square is actually composed of two triangles, and the square doesn’t have the same coordinates as the brush. The coordinate system for brushes assumes an upper-left origin with increasing values of y going down, as shown here:

 SHAPE * MERGEFORMAT

We need a way to indicate how these brush coordinates correspond with the coordinates of the figure the brush will color. You do this using a property of MeshGeometry3D named TextureCoordinates. TextureCoordinates is a PointCollection. These are two-dimensional points rather than three-dimensional points, and they are relative coordinates of the brush. In general, the TextureCoordinates property will have the same number of points as the Positions property, and each two dimensional point in the TextureCoordinates collection corresponds with a three-dimensional point in the Positions collection.

The first point in the Positions collection is (0, 0, 0), the lower-left corner of the square. At that point in the figure, we want the lower-left corner of the brush, which has a coordinate of (0, 1). The second point in Positions is (0, 1, 0), the upper-left corner. That’s the brush corner with the coordinate (0, 0). Continue in this way to assemble the TextureCoordinates collection:
<MeshGeometry3D Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0"

 TriangleIndices="0 2 3, 0 3 1"

 TextureCoordinates="0 1, 0 0, 1 1, 1 0" />

The following markup incorporates that MeshGeometry3D into a GeometryModel3D and also defines a VisualBrush object based on a TextBlock element as the Material property:

<GeometryModel3D>

 <GeometryModel3D.Geometry>

 <MeshGeometry3D Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0"

 TriangleIndices="0 2 3, 0 3 1"

 TextureCoordinates="0 1, 0 0, 1 1, 1 0" />

 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>

 <DiffuseMaterial>

 <DiffuseMaterial.Brush>

 <VisualBrush>

 <VisualBrush.Visual>

 <TextBlock FontFamily="Times New Roman"

 Text="Hello, 3D!" />

 </VisualBrush.Visual>

 </VisualBrush>

 </DiffuseMaterial.Brush>

 </DiffuseMaterial>

 </GeometryModel3D.Material>

</GeometryModel3D>

It’s conceivable that you’ll also want to use that same brush as the BackMaterial property. In that case, you can first define the DiffuseMaterial object as a resource. The following markup would appear in a Resources section of a XAML file:
<DiffuseMaterial x:Key="materialText">

 <DiffuseMaterial.Brush>

 <VisualBrush>

 <VisualBrush.Visual>

 <TextBlock FontFamily="Times New Roman"

 Text="Hello, 3D!" />

 </VisualBrush.Visual>

 </VisualBrush>

 </DiffuseMaterial.Brush>

</DiffuseMaterial>
The GeometryModel3D can then simply reference that resource for both the Material and BackMaterial properties:

<GeometryModel3D Material="{StaticResource materialText}"

 BackMaterial="{StaticResource materialText}">

 <GeometryModel3D.Geometry>

 <MeshGeometry3D Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0"

 TriangleIndices="0 2 3, 0 3 1"

 TextureCoordinates="0 1, 0 0, 1 1, 1 0" />

 </GeometryModel3D.Geometry>

</GeometryModel3D>

Only one set of TextureCoordinates applies to the graphical object, so if you put the same brush on the front and back of the figure, the brush on the back of the figure will be a mirror image of the brush on the front.

Here’s a complete stand-alone XAML program that uses this technique.

VisualBrushFrontAndBack.xaml

<!-- ===

 VisualBrushFontAndBack.xaml (c) 2006 by Charles Petzold

 === -->

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Page.Resources>

 <!-- Define Material object as resource. -->

 <DiffuseMaterial x:Key="materialText">

 <DiffuseMaterial.Brush>

 <VisualBrush>

 <VisualBrush.Visual>

 <TextBlock FontFamily="Times New Roman"

 Text="Hello, 3D!" />

 </VisualBrush.Visual>

 </VisualBrush>

 </DiffuseMaterial.Brush>

 </DiffuseMaterial>

 </Page.Resources>

 <Viewport3D>

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D Material="{StaticResource materialText}"

 BackMaterial="{StaticResource materialText}">

 <!-- Define a unit square. -->

 <GeometryModel3D.Geometry>

 <MeshGeometry3D

 Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0"

 TriangleIndices="0 2 3, 0 3 1"

 TextureCoordinates="0 1, 0 0, 1 1, 1 0" />

 </GeometryModel3D.Geometry>

 <!-- Transform applied to visual object. -->

 <GeometryModel3D.Transform>

 <TranslateTransform3D />

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Ambient light. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <AmbientLight Color="White" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Camera. -->

 <Viewport3D.Camera>

 <PerspectiveCamera Position="0 0.5 1.5" LookDirection="0 0 -1"

 UpDirection="0 1 0" FieldOfView="120" />

 </Viewport3D.Camera>

 </Viewport3D>

</Page>

The camera is positioned horizontally at the left side of the square and aligned vertically with the vertical middle of the square, so when you run this XAML file, the text in the VisualBrush appears vertically centered but with its left edge at the horizontal center. In the following experiments, you might want to get more of a sense of the size and shape of the square when viewed with a 3D perspective, so you can give the brush a background color:

<TextBlock FontFamily="Times New Roman"

 Text="Hello, 3D!"
 Background="Aqua" />
You can, of course, move the camera to look at the back of the square, and perhaps narrow the field of view:
<PerspectiveCamera Position="-2 0.5 -1.5" LookDirection="2 0 1"

 UpDirection="0 1 0" FieldOfView="60" />

Now you’ll see the text in reverse with a definite perspective effect. But let’s not mess around with the camera. Let’s restore it to its original setting and instead focus on transforming the object itself. You will notice that I’ve included a GeometryModel3D.Transform property element enclosing a do-nothing TranslateTransform3D object:
<GeometryModel3D.Transform>

 <TranslateTransform3D />

</GeometryModel3D.Transform>
TranslateTransform3D is one of three classes that derive from AffineTransform3D, as shown in the following class hierarchy:
Object

DispatcherObject (abstract)

DependencyObject

Freezable (abstract)

Animatable (abstract)

Transform3D (abstract)

AffineTransform3D (abstract)

RotateTransform3D

ScaleTransform3D

TranslateTransform3D

MatrixTransform3D

Transform3DGroup

The three classes that derive from AffineTransform3D are probably the ones you’ll use most, but notice also that you can combine various Transform3D objects with Transform3DGroup.
The TranslateTransform3D class defines three properties: OffsetX, OffsetY, and OffsetZ. For example, you can move the object so it’s horizontally centered but with the bottom of the object aligned on the vertical center:

<TranslateTransform3D OffsetX="-0.5" OffsetY="0.5" />
Notice also that you can move the object along the z axis, perhaps much closer to the camera:
<TranslateTransform3D OffsetX="-0.5" OffsetZ="1.35" />
The ScaleTransform3D class defines ScaleX, ScaleY, and ScaleZ properties, and also CenterX, CenterY, and CenterZ properties to indicate the point of the object that remains at the same location when the object is scaled. Here’s an example:

<GeometryModel3D.Transform>

 <ScaleTransform3D ScaleY="3" />

</GeometryModel3D.Transform>

The height of the object is tripled, but the lower-left corner remains in the same place, so its now vertically off center. To keep it vertically centered, try this:

<ScaleTransform3D ScaleY="3" CenterY="0.5" />
Notice that ScaleZ property has no effect on this particular figure because the figure has no dimension along the z axis.
The interesting transform is, of course, rotation. RotateTransform3D defines CenterX, CenterY, and CenterZ properties to indicate the point that remains in the same place when the object is rotated. But RotateTransform3D does not itself define an Angle property. More information is needed because there are numerous ways a three-dimensional object can be rotated. This additional information is provided by setting the Rotation property defined by RotateTransform3D. You set this property to an object of type Rotation3D, an abstract class that is parent to two other classes, as shown in this class hierarchy:

Object

DispatcherObject (abstract)

DependencyObject

Freezable (abstract)

Animatable (abstract)

Rotation3D (abstract)

AxisAngleRotation3D

QuaternionRotation3D

For simple applications, AxisAngleRotation3D is certainly the easier of the two classes to use. You specify the Angle property in degrees and an Axis property which is a Vector3D object indicating the axis of rotation. For example:

<GeometryModel3D.Transform>

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D Angle="-45" Axis="0 1 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

</GeometryModel3D.Transform>

The Axis property here indicates a vector pointing straight up. The rotation will occur around that axis. The Angle is negative 45 degrees. No Center properties have been set, so the point (0, 0, 0) will remain in the same location. Because the Axis property indicates a rotation around a vertical axis, all points of the form (0, y, 0) will remain in the same place. The text will seem to swing around a vertical axis located at the left side of the text. You can instead set Axis to “0 –1 0” and Angle to positive 45 degrees for the same effect. Here’s another:
<GeometryModel3D.Transform>

 <RotateTransform3D CenterY="0.5">

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D Angle="60" Axis="1 0 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

</GeometryModel3D.Transform>

Now the rotation is around an axis parallel to the x axis. The CenterY property indicates “0.5” so that all points of the form (x, 0.5, 0) remain in the same location. The top half of the text leans closer to the viewer, while the bottom half swivels further away, and the 3D perspective is quite noticable.
Of course, what’s most fun is to animate the rotation angle.

SpinningText.xaml

<!-- ===

 SpinningText.xaml (c) 2006 by Charles Petzold

 === -->

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Page.Resources>

 <!-- Define Material object as resource. -->

 <DiffuseMaterial x:Key="materialText">

 <DiffuseMaterial.Brush>

 <VisualBrush>

 <VisualBrush.Visual>

 <TextBlock FontFamily="Times New Roman"

 Text="Hello, 3D!" />

 </VisualBrush.Visual>

 </VisualBrush>

 </DiffuseMaterial.Brush>

 </DiffuseMaterial>

 </Page.Resources>

 <Viewport3D>

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D Material="{StaticResource materialText}"

 BackMaterial="{StaticResource materialText}">

 <!-- Define a unit square. -->

 <GeometryModel3D.Geometry>

 <MeshGeometry3D

 Positions="0 0 0, 0 1 0, 1 0 0, 1 1 0"

 TriangleIndices="0 2 3, 0 3 1"

 TextureCoordinates="0 1, 0 0, 1 1, 1 0" />

 </GeometryModel3D.Geometry>

 <!-- Transform applied to visual object. -->

 <GeometryModel3D.Transform>

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform"

 Axis="0,1,0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Ambient light. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <AmbientLight Color="White" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Camera. -->

 <Viewport3D.Camera>

 <PerspectiveCamera Position="0 0.5 1.5" LookDirection="0 0 -1"

 UpDirection="0 1 0" FieldOfView="120" />

 </Viewport3D.Camera>

 <!-- Animate the transform -->

 <Viewport3D.Triggers>

 <EventTrigger RoutedEvent="Viewport3D.Loaded">

 <BeginStoryboard>

 <Storyboard TargetName="xform" TargetProperty="Angle">

 <DoubleAnimation From="360" To="0" Duration="0:0:10"

 RepeatBehavior="Forever" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </Viewport3D.Triggers>

 </Viewport3D>

</Page>

The program is set up to rotate around the vertical axis, but you might want to try some alternatives. With an Axis of “0, 0, 1” the text remains in the same z plane but rotates around the lower-left corner. With “1, 0, 0” the text rotates around a horizontal axis located at the bottom of the text. Then, of course, there are combinations such as “1, 0, 1” and “1, 1, 0” for a rotation axis not parallel to one of the coordinate axes.
So far, we’ve been working in a three-dimensional coordinate space but the two graphical objects I’ve shown you have both been flat. Let’s break out of that restriction by making a cube. A cube is certainly not the simplest solid object you can fabricate from triangles—pyramids hold that distinction—but cubes are common and useful.

If you situate the cube so that one corner is at the point (0, 0, 0) and the sides extend one unit along the x, y, and z axes, then the eight vertices of the cube are easy:

<MeshGeometry3D Positions="0 0 0, 0 0 1, 0 1 0, 0 1 1,
 1 0 0, 1 0 1, 1 1 0, 1 1 1" … />
It is certainly no coincidence that I’ve ordered these coordinates as an increasing sequence of binary numbers. This sequence helps when developing the indices for the TriangleIndices property. For example, the index of the point (1, 0, 1) within the Positions collection is binary 101 or 5.

Earlier I emphasized how the order of the indices in each triplet in the TriangleIndices collection governs which side of the object is considered the front and which side is considered the back. When defining a solid object, you need to specify which face of the triangle is on the outside surface of the object and which face is inside the object, never to be seen. Specify the coordinates in a counter-clock direction to indicate the outside surface.

This stand-alone XAML file shows a set of TriangleIndices for the cube.
Cube.xaml

<!-- =======================================

 Cube.xaml (c) 2006 by Charles Petzold

 ======================================= -->

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <ScrollBar Margin="24" Minimum="0" Maximum="360"

 Value="{Binding ElementName=rotate, Path=Angle}" />

 <Viewport3D Grid.Column="1">

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D>

 <!-- Define cube. -->

 <GeometryModel3D.Geometry>

 <MeshGeometry3D

 Positions="0 0 0, 0 0 1, 0 1 0, 0 1 1,

 1 0 0, 1 0 1, 1 1 0, 1 1 1"

 TriangleIndices="0 1 2, 1 3 2, 0 2 4, 2 6 4,

 0 4 1, 1 4 5, 1 5 7, 1 7 3,

 4 6 5, 7 5 6, 2 3 6, 3 7 6" />

 </GeometryModel3D.Geometry>

 <!-- Color the cube white. -->

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="White" />

 </GeometryModel3D.Material>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Red light coming from upper right. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <DirectionalLight Color="Red" Direction="-1,-1, -1" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Blue light coming from upper left. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <DirectionalLight Color="Blue" Direction="1,-1, -1" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Yellow light coming from behind. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <DirectionalLight Color="Yellow" Direction="0, 1, 1" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Camera. -->

 <Viewport3D.Camera>

 <PerspectiveCamera Position="-1 2.5 4" UpDirection="0 1 0"

 LookDirection="1.5 -2 -3.5" FieldOfView="45">

 <PerspectiveCamera.Transform>

 <RotateTransform3D

 CenterX="0.5" CenterY="0.5" CenterZ="0.5">

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="rotate"

 Axis="0 1 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </PerspectiveCamera.Transform>

 </PerspectiveCamera>

 </Viewport3D.Camera>

 </Viewport3D>

 </Grid>

</Page>

I’ve indicated that the cube is colored white, but I’ve added color to the scene with three objects of type DirectionalLight. A DirectionalLight object is assumed to come from a point in infinity (like the Sun, perhaps). Set the Direction property to a vector that points from the light source. Each of the three DirectionalLight objects in the Cube.xaml file have different Direction vectors and different Color settings, throwing a nice pattern of light on the cube.

I’ve added a RotateTransform3D and AxisAngleRotation3D elements to the camera with a binding of the Angle property to a scroll bar at the left of the page. Scrolling the scroll bar lets you circle the cube with the camera. Very conveniently, changing the rotation angle of a camera causes a commensurate change in LookDirection so the camera always seems to point to the same place.
The following stand-alone XAML file creates two cubes. To reduce repetitive markup it defines the MeshGeometry3D object as a resource, which is then referenced in two GeometryModel3D start tags:
<GeometryModel3D Geometry="{StaticResource meshCube}">
A ScaleTransform gives the second of the two cubes a size that is 20% of the first cube, and a TranslateTransform moves that second cube away from the origin.

The MeshGeometry3D resource includes a TextureCoordinates attribute that allows the larger of the two cubes to color itself with an ImageBrush based on a bitmap from my Web site. The TextureCoordinates points are defined so that the bitmap is repeated four times around the four vertical faces of the cube. The image is normal on two opposing vertical faces; on the other two vertical faces it’s a mirror image.

PlanetaryCubes.xaml

<!-- ===

 PlanetaryCubes.xaml (c) 2006 by Charles Petzold

 === -->

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Page.Resources>

 <!-- Define cube MeshGeometry3D as resource. -->

 <MeshGeometry3D x:Key="meshCube"

 Positions="0 0 0, 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0, 1 1 1"

 TriangleIndices="0 1 2, 1 3 2, 0 2 4, 2 6 4, 0 4 1, 1 4 5,

 1 5 7, 1 7 3, 4 6 5, 7 5 6, 2 3 6, 3 7 6"

 TextureCoordinates="1 1, 0 1, 0.95 0, 0 0, 0 1, 1 1, 0 0, 0.95 0" />

 </Page.Resources>

 <Viewport3D>

 <!-- Main cube with VisualBrush. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D Geometry="{StaticResource meshCube}">

 <GeometryModel3D.Material>

 <DiffuseMaterial>

 <DiffuseMaterial.Brush>

 <ImageBrush ImageSource=

 "http://www.charlespetzold.com/PetzoldTattoo.jpg" />

 </DiffuseMaterial.Brush>

 </DiffuseMaterial>

 </GeometryModel3D.Material>

 <!-- Animated transform turns cube in circles. -->

 <GeometryModel3D.Transform>

 <RotateTransform3D

 CenterX="0.5" CenterY="0.5" CenterZ="0.5">

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform1"

 Axis="1,1,1" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Smaller cube in orbit. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D Geometry="{StaticResource meshCube}">

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Gray" />

 </GeometryModel3D.Material>

 <GeometryModel3D.Transform>

 <Transform3DGroup>

 <ScaleTransform3D

 ScaleX="0.2" ScaleY="0.2" ScaleZ="0.2" />

 <TranslateTransform3D OffsetX="1" OffsetY="1" />

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform2"

 Axis="0 1 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </Transform3DGroup>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Light source. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <DirectionalLight Color="White" Direction="-1,-1, -1" />

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Camera. -->

 <Viewport3D.Camera>

 <PerspectiveCamera Position="0.5 4 4" UpDirection="0 1 0"

 LookDirection="0 -1 -1" FieldOfView="45" />

 </Viewport3D.Camera>

 <!-- Animations. -->

 <Viewport3D.Triggers>

 <EventTrigger RoutedEvent="Viewport3D.Loaded">

 <BeginStoryboard>

 <Storyboard TargetProperty="Angle">

 <DoubleAnimation Storyboard.TargetName="xform1"

 From="0" To="360" Duration="0:0:10"

 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="xform2"

 From="0" To="360" Duration="0:0:10"

 RepeatBehavior="Forever" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </Viewport3D.Triggers>

 </Viewport3D>

</Page>

The two animations at the bottom put the two cubes in motion like a planet and its moon (if planets and moons were indeed cubes rather than spheres). The large cube rotates around its axis while the small cube revolves around the large cube.
A cube is simple enough to allow coding the MeshGeometry3D by hand. For more complex objects—particularly those that have curved surfaces or might have variations in size or proportions—you’ll want to write a class that generates the MeshGeometry3D coordinates algorithmically.

For integrating such a class into XAML, it would be most convenient if you could derive the class from MeshGeometry3D. You could then put your class right in the GeometryModel3D.Geometry property element. However, the MeshGeometry3D class is sealed, and not enough information is documented to derive a class from Geometry3D. Instead, you’ll need to write a class that has a property of type MeshGeometry3D. You can create an instance of this class in a Resource section in a XAML file, and then reference the property with a binding.

The example I’m going to show you creates a MeshGeometry3D object that describes a tube in three dimensions. My TubeMeshGeometry class defines four read/write properties that set the size of the tube. The Radius property is the radius inside the tube, and Thickness is thickness of the the tube wall. The total diameter of the tube is therefore two times the Radius plus two times the Thickness. The Length property is the length of the tube.
A tube, of course, has curved surfaces, and to mimic the curved surfaces, multiple triangles are required. The fourth read/write property is named Divisions, and governs how many triangles make up the tube. The Divisions number actually controls the number of coordinate points the program generates on the outside and inside of the walls of the tube, and on each end of the tube. The total number of triangles that the TubeMeshGeometry class generates is equal to eight times Divisions.. You can actually set Divisions to a value as low as three, which creates a tube with a cross section shaped like a triangle. You can also make square tubes, pentagonal tubes, hexagonal tubes, and so forth.
TubeMeshGeometry.cs
//---

// TubeMeshGeometry.cs (c) 2006 by Charles Petzold

//---

using System;

using System.Windows.Media.Media3D;

namespace Petzold.RotatingRings

{

 public class TubeMeshGeometry

 {

 // Private fields.

 double radius = 1;

 double thickness = 0.1;

 double length = 1;

 int divisions = 10;

 // Public properties.

 public double Radius

 {

 set

 {

 if (value <= 0)

 throw new Exception("TubeMeshGeometry.Radius must be " +

 "greater than 0");

 radius = value;

 }

 get

 {

 return radius;

 }

 }

 public double Thickness

 {

 set

 {

 if (value <= 0)

 throw new Exception("TubeMeshGeometry.Thickness must be " +

 "greater than 0");

 thickness = value;

 }

 get

 {

 return thickness;

 }

 }

 public double Length

 {

 set

 {

 if (value <= 0)

 throw new Exception("TubeMeshGeometry.Length must be " +

 "greater than 0");

 length = value;

 }

 get

 {

 return length;

 }

 }

 public int Divisions

 {

 set

 {

 if (value <= 2)

 throw new Exception("TubeMeshGeometry.Divisions must be " +

 "greater than 2");

 divisions = value;

 }

 get

 {

 return divisions;

 }

 }

 public MeshGeometry3D MeshGeometry

 {

 get

 {

 MeshGeometry3D meshgeo = new MeshGeometry3D();

 // First calculate the Positions collection.

 double angle, x, y, z = Length / 2;

 // Calculate inner circle, positive z end.

 // Positions indices start at 0.

 for (int i = 0; i < Divisions; i++)

 {

 angle = 2 * Math.PI * i / Divisions;

 x = Radius * Math.Cos(angle);

 y = Radius * Math.Sin(angle);

 meshgeo.Positions.Add(new Point3D(x, y, z));

 }

 // Calculate outer circle, positive z end.

 // Positions indices start at Divisions.

 for (int i = 0; i < Divisions; i++)

 {

 angle = 2 * Math.PI * i / Divisions;

 x = (Radius + Thickness) * Math.Cos(angle);

 y = (Radius + Thickness) * Math.Sin(angle);

 meshgeo.Positions.Add(new Point3D(x, y, z));

 }

 z *= -1;

 // Calculate inner circle, negative z end.

 // Positions indices start at 2 * Divisions.

 for (int i = 0; i < Divisions; i++)

 {

 angle = 2 * Math.PI * i / Divisions;

 x = Radius * Math.Cos(angle);

 y = Radius * Math.Sin(angle);

 meshgeo.Positions.Add(new Point3D(x, y, z));

 }

 // Calculate outer circle, negative z end.

 // Positions indices start at 3 * Divisions.

 for (int i = 0; i < Divisions; i++)

 {

 angle = 2 * Math.PI * i / Divisions;

 x = (Radius + Thickness) * Math.Cos(angle);

 y = (Radius + Thickness) * Math.Sin(angle);

 meshgeo.Positions.Add(new Point3D(x, y, z));

 }

 // Next take care of TriangleIndices.

 for (int i = 0; i < Divisions; i++)

 {

 int iNext = (i + 1) % Divisions;

 // Edge on positive z end.

 meshgeo.TriangleIndices.Add(i);

 meshgeo.TriangleIndices.Add(Divisions + i);

 meshgeo.TriangleIndices.Add(iNext);

 meshgeo.TriangleIndices.Add(Divisions + i);

 meshgeo.TriangleIndices.Add(Divisions + iNext);

 meshgeo.TriangleIndices.Add(iNext);

 // Inside.

 meshgeo.TriangleIndices.Add(i);

 meshgeo.TriangleIndices.Add(iNext);

 meshgeo.TriangleIndices.Add(2 * Divisions + i);

 meshgeo.TriangleIndices.Add(2 * Divisions + i);

 meshgeo.TriangleIndices.Add(iNext);

 meshgeo.TriangleIndices.Add(2 * Divisions + iNext);

 // Edge on negative z end.

 meshgeo.TriangleIndices.Add(3 * Divisions + i);

 meshgeo.TriangleIndices.Add(2 * Divisions + i);

 meshgeo.TriangleIndices.Add(3 * Divisions + iNext);

 meshgeo.TriangleIndices.Add(2 * Divisions + i);

 meshgeo.TriangleIndices.Add(2 * Divisions + iNext);

 meshgeo.TriangleIndices.Add(3 * Divisions + iNext);

 // Outside.

 meshgeo.TriangleIndices.Add(3 * Divisions + i);

 meshgeo.TriangleIndices.Add(3 * Divisions + iNext);

 meshgeo.TriangleIndices.Add(Divisions + i);

 meshgeo.TriangleIndices.Add(Divisions + i);

 meshgeo.TriangleIndices.Add(3 * Divisions + iNext);

 meshgeo.TriangleIndices.Add(Divisions + iNext);

 }

 return meshgeo;

 }

 }

 }

}

The TubeMeshGeometry class has a fifth property that is read-only. This property is named MeshGeometry of type MeshGeometry3D and it generates the Positions and TriangleIndices collections based on the four parameters set through the read/write properties. The tube is always centered around the origin and extends in length along the negative and positive z axis. Normally you would use a transform to move the object to another location in the 3D coordinate space.
If you set the Length property to a comparatively small number relative to the Radius, the object looks more like a ring than a tube, and that’s how I used the class in the RotatingRings project that concludes this chapter. Besides the TubeMeshGeometry.cs file, the project has two XAML file. The first is a trivial application definition file.

RotatingRingsApp.xaml

<!-- ===

 RotationRingsApp.xaml (c) 2006 by Charles Petzold

 === -->

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 StartupUri="RotatingRingsPage.xaml" />
The second XAML file below defines a Page containing a Viewport3D element. Notice the Resources section toward the top of the file. Four TubeMeshGeometry objects are defined with four different Radius values. These are given names of “ring1,” “ring2,” “ring3,” and “ring4.”
These four TubeMeshGeometry objects are the basis for four GeometryModel3D objects. The Geometry attribute of the GeometryModel3D element is set to a binding that references the MeshGeometry property of the TubeMeshGeometry resource:
<GeometryModel3D

 Geometry="{Binding Source={StaticResource ring1},

 Path=MeshGeometry, Mode=OneTime}">

Each of the four GeometryModel3D objects is given a different color and a transform containing RotateTransform3D and AxisRotation3D elements, each with a different Axis property. When the program starts up, the four rings are concentric.
RotatingRingsPage.xaml

<!-- ==

 RotatingRingsPage.xaml (c) 2006 by Charles Petzold

 == -->

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:src="clr-namespace:Petzold.RotatingRings"

 WindowTitle="Rotating Rings"

 Title="Rotating Rings">

 <!-- Include four TubeMeshGeometry objects as resources. -->

 <Page.Resources>

 <src:TubeMeshGeometry x:Key="ring1" Length="1" Radius="10"

 Thickness="1" Divisions="50" />

 <src:TubeMeshGeometry x:Key="ring2" Length="1" Radius="8"

 Thickness="1" Divisions="50" />

 <src:TubeMeshGeometry x:Key="ring3" Length="1" Radius="6"

 Thickness="1" Divisions="50" />

 <src:TubeMeshGeometry x:Key="ring4" Length="1" Radius="4"

 Thickness="1" Divisions="50" />

 </Page.Resources>

 <Viewport3D>

 <!-- Largest ring is red. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D

 Geometry="{Binding Source={StaticResource ring1},

 Path=MeshGeometry, Mode=OneTime}">

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Red" />

 </GeometryModel3D.Material>

 <GeometryModel3D.Transform>

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform1"

 Axis="1 0 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Next smaller ring is green. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D

 Geometry="{Binding Source={StaticResource ring2},

 Path=MeshGeometry, Mode=OneTime}">

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Green" />

 </GeometryModel3D.Material>

 <GeometryModel3D.Transform>

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform2"

 Axis="0 1 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Next smaller ring is blue. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D

 Geometry="{Binding Source={StaticResource ring3},

 Path=MeshGeometry, Mode=OneTime}">

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Blue" />

 </GeometryModel3D.Material>

 <GeometryModel3D.Transform>

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform3"

 Axis="1 1 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Smallest ring is gray. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <GeometryModel3D

 Geometry="{Binding Source={StaticResource ring4},

 Path=MeshGeometry, Mode=OneTime}">

 <GeometryModel3D.Material>

 <DiffuseMaterial Brush="Gray" />

 </GeometryModel3D.Material>

 <GeometryModel3D.Transform>

 <RotateTransform3D>

 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D x:Name="xform4"

 Axis="-1 1 0" />

 </RotateTransform3D.Rotation>

 </RotateTransform3D>

 </GeometryModel3D.Transform>

 </GeometryModel3D>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Throw a little light on the subject. -->

 <ModelVisual3D>

 <ModelVisual3D.Content>

 <DirectionalLight Color="White" Direction="2 -2 -8"/>

 </ModelVisual3D.Content>

 </ModelVisual3D>

 <!-- Set up a camera. -->

 <Viewport3D.Camera>

 <PerspectiveCamera Position="0 0 25" UpDirection="0 1 0"

 LookDirection="0 0 -1" FieldOfView="90" />

 </Viewport3D.Camera>

 </Viewport3D>

 <!-- Animations to rotate the rings. -->

 <Page.Triggers>

 <EventTrigger RoutedEvent="Page.Loaded">

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation Storyboard.TargetName="xform1"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:12"

 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="xform2"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:10"

 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="xform3"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:6"

 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="xform4"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:4"

 RepeatBehavior="Forever" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </Page.Triggers>

</Page>

The animations toward the bottom of the file change the Angle property of each transform at a different rate, causing the rings to spin around their axes. The durations of the animations are set so the four rings return to the initial concentric configuration every minute.
This application was simple enough to compile as a XAML Browser Application so it can be run in Internet Explorer just like stand-alone XAML files, and as you see the familiar environs of Internet Explorer playing host to animated three-dimensional graphics, you’re witnessing the commencement of one of the most exciting voyages that Windows programming has ever offered us.
+x

–x

+y

–y

+z

–z

–z

+z

–y

+y

–x

+x

(1,0,0)

(–1,0,0)

(0,1,0)

Triangle (2 units wide)

Camera (3 units away)

(90° Viewing Angle (away)

(0,1,0)

(1,1,0)

(1,0,0)

–z

+z

–y

+y

–x

+x

(1, 0)

(0, 0)

(0, 1)

(1, 1)

Page 1

_1211719377.unknown

